Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Геометрические приложения поверхностных интегралов

Пример Вычислить интеграл с помощью формулы Грина. Контур интегрирования C представляет собой окружность (рисунок 7).

Решение. Компоненты векторного поля и их частные производные равны Тогда по формуле Грина получаем Для вычисления двойного интеграла удобно перейти к полярным координатам. Здесь Таким образом, интеграл равен Характеристическое уравнение
Рис.7

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Геометрические приложения поверхностных интегралов