Принимаем заказы на выполнение контрольных, курсовых, дипломных работ

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

 

Народная медицина

Соблазн возбуждающая  жвачка

Соблазн возбуждающая жвачка

 

KupiVip – крупнейший онлайн-магазин

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Renoven - антиварикозный   бальзам

Renoven - антиварикозный бальзам

ШефМаркет. Доставка продуктов с рецептами

Уборка   квартир в Москве

Уборка квартир в Москве

Дизайнерская мебель

Заказ и доставка билетов

Заказ и доставка билетов

 Академия Моды и Стиля

Академия Моды и Стиля

 

Интернет-магазин Olympus

Интернет-магазин Olympus<

Тройные и двойные интегралы Вычислить объем единичного шара Геометрические приложения криволинейных интегралов Вычислить площадь поверхности Несобственные интегралы Интегральный признак Коши Интегрирование гиперболических функций

Тройные и двойные интегралы при решении задач

Интегральный признак Коши

Пример Определить, сходится или расходится ряд .

Решение. Применяя интегральный признак, вычислим соответствующий несобственный интеграл: Интегрируем по частям: Получаем Предел в последнем выражении можно оценить по правилу Лопиталя:

Следовательно, несобственный интеграл конечен и равен 1. Поэтому, исходный ряд сходится. Фундаментальная система решений

Найти предел .

;

.

 

  Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Замечание. При интегрировании методом подведения под знак дифференциала бывают полезны следующие равенства:

1. ; 2. ;

3. ; 4. ;

5. ; 6. ;

7. ; 8. ;

9. ; 10. ;

11. .

Пример

При интегрировании использовали формулы и положив

Геометрические приложения поверхностных интегралов