Расчет сжатых составных колон на устойчивость

Начертательная геометрия
  • Cборочные единицы
  • Обозначение материалов
  • Построение лекальных кривых
  • Примеры построения сопряжений
  • Выполнение чертежей деталей
  • Машиностроительное черчение
  • Позиционные задачи
  • Способ замены плоскостей проекции
  • Теория и синтез машин и механизмов
    Черчение выполнение чертежей
    Основы технической механики
    Примеры решения задач по математике
    Тройные и двойные интегралы
    Примеры курсового расчета
    Математика лекции и примеры решения задач
    Линейная и векторная алгебра
    Математический анализ
    Дифференцирование исчисление
    Интегральное исчисление
    Дифференциальные уравнения
    Примеры вычисления интегралов
    Вычисление длин дуг кривых
    Вычисление площадей в декартовых
    координатах
    Вычисление площадей фигур при
    параметрическом задании границы (контура)
    Площадь в полярных координатах 
    Вычисление объема тела
    Вычисление длин дуг плоских кривых,
    заданных в декартовых координатах

    Вычисление длин дуг кривых,
    заданных параметрически 

    Предел функции
    Производная функции
    Интегрирование тригонометрических выражений
    Задачи на вычисление интегралов
    Исследовать функцию
    Определенный и неопределенный интеграл
    Применение тройных интегралов
    Криволинейный интеграл
    Векторная функция
    Числовые ряды
    Степенные ряды
    Понятие функции
    комплексной переменной
    Операционное исчисление
    Интеграл Фурье
    Ряды Фурье
    Машиностроительное черчение
    Черчение в инженерной практике
    Оформление чертежа
    Техническая механика
  • Штриховка разрезов
  • Спецификация
  • Неметаллические материалы
  • Техника вычерчивания и обводка
  • Построение лекальных кривых
  • Основная надпись
  • Сопряжение
  • Форматы
  • Последовательность нанесения
    размеров
  • Проецируещие прямые
  • Позиционные задачи
  • Вращение плоскости
  • Информатика
    Основы Web технологий
    Общие принципы построения вычислительных
    сетей
    Основы передачи дискретных данных
    Базовые технологии локальных сетей
    Построение локальных сетей по стандартам
    физического и канального уровней
    Сетевой уровень как средство построения
    больших сетей
    Глобальные сети
    Средства анализа и управления сетями
    Сборник задач по физике
    Электротехника и электроника
    Электрический ток
    Законы Ома и Кирхгофа
    Кинематика материальной точки
    Основные представления
    об электричестве
    Электромагнитные волны
    Физическая оптика
    Ядерная физика
    Физика элементарных частиц
    Строение атомных ядер
    Законы теплового излучения
    Классическая физика
    Энеpгия движения тел с неподвижной осью
    Постулаты теоpии относительности
    Теpмодинамические системы
    Курс лекций по химии
    Атомная энергетика
    Повышение безопасности атомной станции
    Ядерные реакторы
    Основы ядерной физики
    Использование атомной энергетики
    для решения проблем дефицита пресной воды
    Проектирование и строительство
    атомных энергоблоков
    Юбилей Атомной энергетики

    Атомная Энергетика России Аварии и инциденты Экология Кольская АЭС Ленинградская АЭС Билибинская АЭС Курская АЭС

    Ядерные реакторы технология
    Реаторы третьего поколения ВВЭР-1500

    Определить горизонтальное смещение хС точки С рамы, изображенной на рис. 4.6.5, а. Жесткость на изгиб всех участков рамы постоянна и равна EI.

    Для определения опорных реакций H, RA, RB, MA составим уравнения равновесия: откуда H = 0, далее  тогда  

    Определить опорные реакции и построить эпюры изгибающих моментов М и поперечных сил Q для балки с консолью (рис. 4.7.3). Жесткость балки на изгиб постоянна и равна EI.

    Определить опорные реакции, построить эпюры изгибающих моментов и поперечных сил для двухпролетной балки, изображенной на рис. 4.7.5. Принять, что F1 = F.

    Сварная балка Требуемый момент сопротивления Wzn сварных балок вычисляют по формуле (4.2.7), после чего приступают к компоновке составного сечения.

    Установив размеры стенки, определяют ее осевой момент инерции  (4.8.5).

    Максимальный изгибающий момент в середине пролета балки составляет максимальная поперечная сила на опорах:

    Проверим касательные напряжения по нейтральной оси поперечного сечения у опоры балки.

    Для консольной двутавровой балки, загруженной горизонтальной силой F1 = 0,56 кН и вертикальной силой F2 = 5,84 кН (рис. 5.1.3), построить эпюру нормальных напряжений в защемлении и найти максимальное нормальное напряжение σmax.

    Для балки, лежащей на двух опорах и загруженной тремя вертикальными сосредоточенными силами F1 = F3 = 10 кН, F2 = 20 кН и равномерно распределенной горизонтальной нагрузкой q = 24кН/м, требуется подобрать прямоугольное поперечное сечение с отношением сторон .

    Внецентренное растяжение и сжатие бруса большой жесткости.  Ядро сечения.

    Найти допускаемую нагрузку для бруса, показанного на рис. 5.2.4, если расчетные сопротивления материала бруса на растяжение и сжатие равны

    Radm,t = 20 МПа; Radm,с = 100 МПа.

    Построить эпюру нормальных напряжений и определить положение нейтральной линии в прямоугольном поперечном сечении короткого столба, нагруженного вертикальной сосредоточенной силой F, приложенной так, как показано на рис. 5.2.5.

    Для круглого поперечного сечения с радиусом R ядро сечения представляет собой соосный круг меньшего радиуса r = R/4.

    На рис. 5.2.14 изображено поперечное сечение бруса и показаны центры тяжести четырех простых элементов, составляющих это поперечное сечение.

    Совместное действие изгиба и кручения Для выявления опасного сечения при совместном действии изгиба и кручения строятся эпюры крутящих и изгибающих моментов по правилам  глав 3 и 4.

    Рассчитать радиус круглого цилиндрического вала с прямой осью, несущего два шкива, весом каждый по 1 кН и с одинаковыми диаметрами D = 0,5 м.

    Керамическая труба подвержена действию крутящего момента Т = 0,08 кН·м и изгибающего момента М = 0,06 кН·м.

    Построить эпюры крутящего Мх и изгибающих Му, Мz моментов, нормальных N и поперечных Qy, Qz сил, действующих в поперечных сечениях пространственного ломаного бруса, показанного на рис. 5.3.8, а. Брус состоит из прямолинейных участков, перпендикулярных друг другу.

    Все полученные числовые значения откладываем на соответствующих эпюрах. Из полученных эпюр видно, что наиболее опасным поперечным сечением будет сечение на опоре А, в котором действуют N(AB)= N = –1 кН;