Подбор номера прокатного профиля

Начертательная геометрия
  • Cборочные единицы
  • Обозначение материалов
  • Построение лекальных кривых
  • Примеры построения сопряжений
  • Выполнение чертежей деталей
  • Машиностроительное черчение
  • Позиционные задачи
  • Способ замены плоскостей проекции
  • Теория и синтез машин и механизмов
    Черчение выполнение чертежей
    Основы технической механики
    Примеры решения задач по математике
    Тройные и двойные интегралы
    Примеры курсового расчета
    Математика лекции и примеры решения задач
    Линейная и векторная алгебра
    Математический анализ
    Дифференцирование исчисление
    Интегральное исчисление
    Дифференциальные уравнения
    Примеры вычисления интегралов
    Вычисление длин дуг кривых
    Вычисление площадей в декартовых
    координатах
    Вычисление площадей фигур при
    параметрическом задании границы (контура)
    Площадь в полярных координатах 
    Вычисление объема тела
    Вычисление длин дуг плоских кривых,
    заданных в декартовых координатах

    Вычисление длин дуг кривых,
    заданных параметрически 

    Предел функции
    Производная функции
    Интегрирование тригонометрических выражений
    Задачи на вычисление интегралов
    Исследовать функцию
    Определенный и неопределенный интеграл
    Применение тройных интегралов
    Криволинейный интеграл
    Векторная функция
    Числовые ряды
    Степенные ряды
    Понятие функции
    комплексной переменной
    Операционное исчисление
    Интеграл Фурье
    Ряды Фурье
    Машиностроительное черчение
    Черчение в инженерной практике
    Оформление чертежа
    Техническая механика
  • Штриховка разрезов
  • Спецификация
  • Неметаллические материалы
  • Техника вычерчивания и обводка
  • Построение лекальных кривых
  • Основная надпись
  • Сопряжение
  • Форматы
  • Последовательность нанесения
    размеров
  • Проецируещие прямые
  • Позиционные задачи
  • Вращение плоскости
  • Информатика
    Основы Web технологий
    Общие принципы построения вычислительных
    сетей
    Основы передачи дискретных данных
    Базовые технологии локальных сетей
    Построение локальных сетей по стандартам
    физического и канального уровней
    Сетевой уровень как средство построения
    больших сетей
    Глобальные сети
    Средства анализа и управления сетями
    Сборник задач по физике
    Электротехника и электроника
    Электрический ток
    Законы Ома и Кирхгофа
    Кинематика материальной точки
    Основные представления
    об электричестве
    Электромагнитные волны
    Физическая оптика
    Ядерная физика
    Физика элементарных частиц
    Строение атомных ядер
    Законы теплового излучения
    Классическая физика
    Энеpгия движения тел с неподвижной осью
    Постулаты теоpии относительности
    Теpмодинамические системы
    Курс лекций по химии
    Атомная энергетика
    Повышение безопасности атомной станции
    Ядерные реакторы
    Основы ядерной физики
    Использование атомной энергетики
    для решения проблем дефицита пресной воды
    Проектирование и строительство
    атомных энергоблоков
    Юбилей Атомной энергетики

    Атомная Энергетика России Аварии и инциденты Экология Кольская АЭС Ленинградская АЭС Билибинская АЭС Курская АЭС

    Ядерные реакторы технология
    Реаторы третьего поколения ВВЭР-1500
    Нейтральная линия пересекает ось z в точке с координатами у = 0, zo, тогда из уравнения (в) находим .

    Подобрать по III теории прочности ( по критерию наибольших касательных напряжений) размеры сплошного прямоугольного поперечного сечения  пространственного стального бруса, изображенного на рис. 5.3.8, а.

    Рассмотрим поочередно три точки (1÷3). Будем учитывать только действие моментов Мх, Му, Mz, а действием нормальной N и поперечной Qz сил пренебрежем.

    Брус состоит из прямолинейных участков, перпендикулярных друг другу, a = 0,2 м.

    Расчет кривых брусьев малой кривизны Если отношение высоты h кривого бруса к его радиусу кривизны Ro существенно меньше единицы (h/Ro < 0,2 ), то считается, что брус имеет малую кривизну.

    Найдем вертикальные опорные реакции RA, RB простой балки, показанной на рис. 5.4.1, б. Предположим, что на балку действует та же нагрузка, что и на арку. В этом случае найдем RA = VA , RB = VB.

    И наконец, по формулам (5.4.3) находим значения внутренних усилий, возникающих в арке. Например, в сечении х = 0 имеем у = 0,   sinφ = 0,8; cosφ = 0,6; Н = 19,5 т.

    Построить эпюры изгибающих моментов Mz, поперечных и нормальных N сил для трехшарнирной параболической арки, показанной на рис. 5.4.3.

    Ось эллиптической арки очерчена по кривой.

    Расчет толстостенных труб В толстостенных трубах, нагруженных равномерным давлением, напряжения и деформации не изменяются вдоль оси трубы.

    Для стальной составной трубы заданы: внутренний радиус внутренней трубы а = 7см, внутреннее давление р = 100 МПа, расчетное сопротивление стали Ry = 240 МПа, коэффициент Пуассона ν = 0,3; модуль продольной упругости Е = 2·105 МПа.

    Проверка прочности в опасных точках составной  трубы, нагруженной внутренним давлением р.

    Устойчивость сжатых стержней Наименьшее значение сжимающей силы, при котором сжатый стержень теряет способность сохранять прямолинейную форму равновесия, называется критической силой и обозначается Fcr.

    Определить критическую нагрузку для сжатого стального стержня, имеющего прямоугольное поперечное сечение 46 см. Концы стержня шарнирно закреплены. Длина стержня l = 0,8 м.

    Как изменится критическая сила, определяемая по формуле Эйлера, если длина стержня увеличится в 2 раза?

    Определить критическую силу и критическое напряжение для центрально сжатой стальной стойки двутаврового сечения (двутавр № 33) длиной l = 4 м. Нижний конец стойки защемлен, верхний – шарнирно оперт.

    Расчет на устойчивость деревянных конструкций, подверженных центральному сжатию силой N, необходимо выполнять по формуле:  (6.2.4).

    Расчет элементов неармированных каменных конструкций при центральном сжатии следует производить по формуле:.

    Для стального стержня с заданной формой поперечного сечения (рис. 6.2.1), сжатого силой N = 500 кН, требуется найти размеры поперечного сечения. Материал стержня – сталь C255.

    Задача . Подобрать диаметр сплошного стержня из стали С285. Стержень сжат продольной силой N = 20 кН. Концы стержня закреплены шарнирно. Длина стержня l = 100 см, а коэффициент условий работы